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Abstract
We propose a numerical method for computing zeta functions for general
classes of Hamiltonians, based on the Gelfand–Yaglom theorem, which
computes the determinant without needing to compute the eigenvalues. We
verify that this agrees with known analytic results for certain Hermitean
Hamiltonians, and we present numerical evidence that it may extend also to
non-Hermitean PT-symmetric Hamiltonians.

PACS numbers: 02.70.Hm, 02.30.Mv

(Some figures in this article are in colour only in the electronic version)

Consider a Hamiltonian H, with a spectrum of eigenvalues λ. Define the associated zeta
function [1] as

ζH (s) = tr
1

Hs
=

∑
λ

1

λs
. (1)

Our analysis is based on the simple observation that the log determinant of H, with a spectral
parameter m2, acts as a generating function for the zeta functions:

ln

(
det(H + m2)

det(H)

)
=

∞∑
n=1

(−1)n+1

n
m2nζH (n). (2)

There exist certain soluble cases, some examples of which are recalled below, for which this
relation can be evaluated analytically, because the relevant determinants and zeta functions can
be computed in closed form [2, 3]. These soluble cases reveal a beautiful structure of functional
relations satisfied by the determinants and a deep relation with number theory. Functional
relations such as these also lie at the heart of the remarkable relationship between integrable
models and ordinary differential equations [4]. Here we propose using a numerical evaluation
of the log determinant, using the Gelfand–Yaglom theorem [5–8] as a numerical method for
computing zeta functions. This can be applied to a large class of Hamiltonians, extending
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beyond the known soluble cases. The Gelfand–Yaglom theorem, in its simplest form for
Dirichlet boundary conditions on an interval x ∈ [a, b], states that to evaluate the determinant
one does not need to compute any eigenvalues; rather, one solves the homogeneous equation
with simple initial-value boundary conditions:

Hφ = 0, φ(a) = 0, φ′(a) = 1 ⇒ det H = φ(b). (3)

In addition to its intrinsic simplicity and geometric interpretation [9], this result is numerically
practical, as it is trivial to implement numerically, even including a spectral parameter m2 as
in (2). On an infinite interval, the theorem is understood as applied to ratios of determinants,
in which case the numerical integrations yield finite ratios.

A simple soluble example that illustrates the basic idea is provided by the one-dimensional
free Hamiltonian, H = − d2

dx2 , defined on the interval x ∈ [−L,L], with Dirichlet boundary
conditions. Using (3), we find

ln

(
det(H + m2)

det(H)

)
= ln

(
sinh(2mL)

2mL

)
=

∞∑
n=1

(−1)n+1

n

ζR(2n)

π2n
(2mL)2n, (4)

from which we easily recognize the Riemann zeta function form of the zeta functions for H:

ζH (n) =
∞∑

k=1

1

(kπ/(2L))2n
= (2L)2n

π2n
ζR(2n). (5)

A less-trivial soluble example is provided by the free radial Hamiltonian in two dimensions
on a disc of radius R, in a given partial wave of angular momentum l: H = − d2

dr2 + l2−1/4
r2 .

The eigenvalues of H are expressed in terms of the zeros j
(l)
k of the Bessel function Jl(r):

λk = 1
/(

j
(l)
k R

)2
, k = 1, 2, . . . . Applying the Gelfand–Yaglom theorem on the interval

r ∈ [0, R] we find

ln

(
det(H + m2)

det(H)

)
= ln

(
l!Il(mR)

(mR/2)l

)
= 1 +

(mR)2

4(l + 1)
− (mR)4

32(l + 2)(l + 1)2
+ · · · (6)

from which we deduce the relevant zeta functions. Note the remarkable fact that there are
simple expressions for the sums of inverse powers of the Bessel zeros, known already to
Euler [10], even though there is no simple expression for the Bessel zeros themselves. It is
straightforward to generalize this free radial example to d dimensions.

So far, these examples were for free Hamiltonians. There is a class of Hamiltonians
with nontrivial potentials for which the zeta functions can also be obtained in closed form,
once again even though there is no closed expression for the individual eigenvalues. For the
homogeneous potentials V = x2N these have been evaluated by Voros [2, 3]. These results are
based on a construction of the associated Green function, and hence of the zeta function, from
solutions to the homogeneous equation, whose solutions for such a potential are just Bessel
functions. This idea was extended to PT-symmetric potentials by Mezincescu [11], and by
Bender and Wang [12]. For more complicated potentials that are not homogeneous functions
of x it is not usually possible to solve the homogeneous equation exactly, and so neither the
eigenvalues nor the zeta functions can be computed exactly. However, the Gelfand–Yaglom
side of the generating function relation (2) is still simple to evaluate numerically, and this can
be used to extract numerical values for the associated zeta functions. We first show how this
works for the soluble Hermitean cases mentioned above and then extend it to some nontrivial
cases.

Consider the Hamiltonians

H = − d2

dx2
+ gx2N . (7)
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Figure 1. Plot of the zeta function ζL
H (1) for the quartic potential V = x4 as a function of L.

Lowest (blue) dots denote the raw numerical data from (8) and show a slow convergence in the
large L limit. The (green) diamonds in the middle and the (red) squares at top represent the data
after one and two iterations respectively of the VBS extrapolation procedure described in the text.
They clearly show better and better convergence at large L.

Scaling out the coupling g, the eigenvalues scale as λ ∝ g2/(N+2), so we can drop the g

dependence and just consider the numerical value of the eigenvalues, and associated spectral
functions, at g = 1. We integrate the Gelfand–Yaglom equation (3), now combined with the
spectral parameter m2,

(H + m2)φm2 =
(

− d2

dx2
+ x2N + m2

)
φm2 = 0 (8)

from x = −L to x = +L, with the initial value conditions in (3). This can be done for any
value of the spectral parameter m2. The first and second zeta functions correspond to the
leading two coefficients in the small m2-expansion in (2). Hence they are simply determined
by taking one and two derivatives of the functional determinant (i.e., the end point value of
the Gelfand–Yaglom solution φm2(L)) with respect to m2 as

ζL
H (1) = ∂

∂m2
ln φm2(L)

∣∣∣∣
m2=0

, ζ L
H (2) = −

(
∂

∂m2

)2

ln φm2(L)

∣∣∣∣
m2=0

. (9)

We have evaluated these numerical derivatives for each value of L for L = 1, 2, . . . , Lmax. In
the cases studied in this paper, we have taken Lmax = 30–50 to obtain convergence, depending
on the specific form of the potential. In order to find the values with infinite size (L → ∞),
we use the VBS extrapolation method, proposed by van den Broeck and Schwartz [13], and
first applied to critical phenomena by Hamer and Barber [14]. It permits the extraction of a
reliable asymptotic value from a sequence of finite-size data. The procedure of the algorithm
can be explained as follows.

Suppose that we have a sequence of data fL for L = 1, 2, . . . , Lmax. After identifying
theses data as zeroth level values, f

(0)
L , we can construct (k + 1) th level data f

(k+1)
L from f

(k)
L

and f
(k−1)
L using the recurrence relation[

f
(k+1)
L − f

(k)
L

]−1
+ α

[
f

(k−1)
L − f

(k)
L

]−1 = [
f

(k)
L+1 − f

(k)
L

]−1
+

[
f

(k)
L−1 − f

(k)
L

]−1
(10)

with the supplementary data f
(−1)
L = ∞. In (10), the free parameter α can be chosen to

optimize the convergence. In this paper, we have chosen α = −(1 − (−1)L)/2 following
the suggestion in [14]. As an illustration, in figure 1 we plot ζH (1) in the case of the quartic
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Table 1. Zeta function values for x2N potentials.

Potential Numerical ζH (1) Exact ζH (1) Numerical ζH (2) Exact ζH (2)

x2 Divergent Divergent 1.2337 π2

8 = 1.233 701

x4 2.289 91 2.289 909 0.996 32 0.996 320
x6 1.721 35 1.721 346 0.838 750 0.838 749
x8 1.4940 1.493 996 0.726 49 0.726 491

Table 2. Zeta function values for ix3 potential.

Numerical Exact Heat kernel Numerical Exact Heat kernel
Potential ζH (1) ζH (1) approx ζ hk

H (1) ζH (2) ζH (2) approx ζ hk
H (2)

ix3 2.835 09 2.835 094 2.826 17 0.845 70 – 0.839 887

potential V = x4. The first and second iterations of VBS algorithm clearly show good
convergence for sufficiently large values of L. The values for the first two zeta functions from
the VBS extrapolation are shown in table 1. The agreement with the exact values of Voros is
excellent. This numerical method is straightforward to apply to more complicated potentials,
for example of non-homogenous or non-polynomial form.

We now observe that for PT-symmetric Hamiltonians [15], a direct application of the
Gelfand–Yaglom theorem still yields a real value of the determinant. To illustrate this, we
consider cases with potentials involving complex part ix3, for which the principal Stokes wedge
includes the real axis. Then the initial value at x = −L is real, and hence by PT symmetry
so is the final value at x = +L, even though φm2(x) is complex in the interior of the interval.
This observation, and our numerical results below, can be viewed as motivation for a serious
study of the Gelfand–Yaglom theorem for PT-symmetric Hamiltonians, taking into account
the appropriate Stokes wedge structure of the complex x-plane for more general PT-symmetric
Hamiltonians. It is also consistent with the fact that for a PT-symmetric Hamiltonian the
energy eigenvalues are either real or come in complex conjugate pairs [15]. To test the idea,
we first apply this numerical procedure to the potential V = ix3, and obtain a numerical value
of ζH (1) in excellent agreement with the known exact value [11, 12], as shown in table 2.
Furthermore, we are able to extract a numerical value for the second zeta value ζH (2). The
values based on a heat kernel approximation are discussed below.

Next we apply this Gelfand–Yaglom technique to the following nontrivial PT-symmetric
Hamiltonian

H = − d2

dx2
+

x2

4
+ igx3. (11)

In this case, since V (x) is not homogeneous, it is not possible to scale out the dependence on
the coupling g. The spectral properties of this system have been studied using exact WKB
methods [16] and large-order perturbation theory [17], providing strong evidence for reality
of the spectrum for real g, and illustrating consistency with WKB analysis of the associated
real potential V (x) = x2

4 + gx3 [18–20]. For the Hamiltonian (11) there is no known exact
expression for the zeta function. Our numerical results for the first two zeta function values
are presented in table 3, for various values of the coupling g.
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Table 3. Zeta function values for x2

4 + igx3 potential for various values of the coupling g.

Potential Numerical Heat kernel Numerical Heat kernel
x2/4 + Igx3 ζH (1) approx ζ hk

H (1) ζH (2) approx ζ hk
H (2)

g = 1/64 10.3388 10.3396 4.8395 5.016 17
g = 1/32 8.8856 8.912 79 4.642 31 4.721 61
g = 1/16 7.4778 7.477 15 4.152 39 4.146 12
g = 1/8 6.087 40 6.074 87 3.279 46 3.250 66
g = 1/4 4.798 37 4.783 23 2.254 56 2.230 42
g = 1/2 3.701 18 3.688 06 1.405 27 1.3895
g = 1 2.824 37 2.810 97 0.833 557 0.824 069
g = 2 2.1458 2.137 89 0.484 39 0.478 854

Since there are no other published results with which to compare, we make the following
approximate comparison based on an approximation for the heat kernel trace. Recall that the
heat kernel trace is related to the zeta function by a Mellin transform [2, 3]:

Z(t) ≡ tr e−Ht ⇒ ζH (s) = 1

�(s)

∫ ∞

0
dt t s−1Z(t). (12)

At large t, the behavior of the heat kernel Z(t) is determined by the lowest eigenvalue λ0 of
H. On the other hand, at small t, the behavior can be extracted from the exponentiated form of
the Seeley–DeWitt expansion [8, 21, 22]:

Z(t) ∼ 1√
4πt

∫
dx exp

[
−tV (x) − t2 1

6
V ′′(x) + t3

(
1

12
(V ′(x))2 − 1

60
V (4)(x)

)

+ t4

(
1

90
(V ′′(x))2 +

1

30
V ′(x)V (3)(x) − 1

840
V (6)(x)

)
+ · · ·

]
. (13)

For one-dimensional systems, it is straightforward to generate as many terms in this series as
desired. For a PT-symmetric potential, we note that even though V (x) may be complex, the
PT symmetry ensures that the Seeley–DeWitt expansion is real.

The heat kernel expansion (13) gives information about the small t behavior of Z(t),
which is related to the large eigenvalues of H, while the large t behavior of Z(t) is related to
the small eigenvalues of H. But to evaluate the zeta function from (12) we need Z(t) for all t.
We can therefore approximate the heat kernel trace, and hence the zeta function, by making
an interpolation of Z(t), matching its behavior at small and large t. The simplest way to do
this is to match the large t behavior Z(t) ∼ e−λ0t , based on just the lowest eigenvalue λ0, to
the small t behavior of Z(t) obtained from the first few terms of (13). For the PT-symmetric
Hamiltonian in (11):

Z(t, g)

∼
{

e−λ0(g)t , t → ∞
1√
4πt

∫ ∞
−∞ dx exp

[− x2t
4 − t2

12 + x2t3

48 − 3g2x4t3

4

]
cos

(
gx3t + gxt2 − 1

4gx3t3
)
, t → 0

(14)

We use values for λ0(g) from [17] to define the large t behavior of Z(t, g), as a function of the
coupling g. We interpolate between the asymptotic small and large t behaviors by joining the
two curves, truncating them where they meet. Surprisingly, the small and large t asymptotic
behaviors fit together relatively smoothly, even with such a crude approximation. Some typical
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Figure 2. Interpolations of the heat kernel traces for the Hamiltonian in (11), based on the
asymptotic forms in (14), for various values of the coupling g: g = 1/32, g = 1/8, g = 1/2, g = 2.
Note that even this very crude approximation is quite smooth.

examples are shown in figure 2, for various values of g. Of course, better precision could be
achieved by including more of the low eigenvalues in the large t behavior, and more terms of
the Seeley–De Witt expansion in the small t behavior. The results for the zeta function for the
simple PT potential V = ix3 are given in table 2 and show that this very simple approximation
already yields good agreement, within a few percent. For the more complicated PT-symmetric
Hamiltonian in (11), the heat kernel approximation results for the zeta function are given in
table 3, and once again show good agreement with the numerical values obtained from our
Gelfand–Yaglom method.

To conclude, in this paper we make two observations. First, the Gelfand–Yaglom
theorem can be used as a numerical tool to evaluate zeta functions for general classes of
quantum-mechanical Hamiltonians, without needing to find any eigenvalues. For conventional
Hermitean cases this yields excellent agreement with known results for soluble cases, and can
be extended to a broader class of Hamiltonians than those studied analytically [2, 3]. Second,
we propose that the Gelfand–Yaglom theorem, and also the Seeley–DeWitt expansion of
the heat kernel trace, could be extended to PT-symmetric Hamiltonians. Our results lend
numerical support to this idea and suggest that a careful analytic study of these ideas would
be worthwhile, taking into account the rich monodromy structure already found in PT models
[4, 15, 16].
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